SILCOM SYSTEMS, INC.

GUNMAN NI 43-101 TECHNICAL REPORT

 REPORT DATE
 May 30, 2017

 EFFECTIVE DATE
 May 30, 2017

PREPARED BY

DANIEL W. KALMBACH, CPG GERALD E. RAY, PH.D., P.GEO

GUNMAN PROPERTY WHITE PINE COUNTY, NEVADA

TABLE OF CONTENTS

1.0	SUMN	1ARY	1
2.0	INTRO	DUCTION	4
	2.1	INTRODUCTION	4
	2.2	TERMS OF REFERENCE	4
	2.3	Sources of Information	4
	2.4	UNITS & CURRENCY	4
3.0	RELIAN	NCE ON OTHER EXPERTS	6
4.0	PROPE	RTY DESCRIPTION & LOCATION	7
	4.1	LOCATION	7
	4.2	MINERAL RIGHTS	7
	4.3	TENURE RIGHTS	11
	4.4	RESOURCES, RESERVES, DEVELOPMENT & INFRASTRUCTURE	11
	4.5	LEGAL SURVEY	11
	4.6	Environmental Liabilities	12
	4.7	Permits	12
5.0		SIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE & PHYS	
			-
	5.1	Access	
	5.2	LOCAL RESOURCES	
	5.3	CLIMATE	-
	5.4	Physiography	15
6.0	HISTO	RY	16
7.0	GEOLC	OGICAL SETTING & MINERALIZATION	19
	7.1	DISTRICT GEOLOGY	19
	7.2	PROPERTY GEOLOGY	22
	7.3	PROPERTY MINERALIZATION	31
8.0	DEPOS	SIT TYPES	34
9.0	EXPLO	RATION	35
10.0	DRILLI	NG	
	10.1	PROPERTY DRILLING HISTORY	
	10.2	2014 Cypress Drilling	

	10.3	Key Drill Intercepts	39
11.0	SAMPI	E PREPARATION, ANALYSIS & SECURITY	42
	11.1	SAMPLE PREPARATION & ASSAYING	42
	11.2	QUALITY ASSURANCE & QUALITY CONTROL	43
	11.3	Security	43
12.0	DATA	VERIFICATION	44
13.0	MINER	AL PROCESSING & METALURGICAL TESTING	47
14.0	MINER	AL RESOURCE ESTIMATES	49
15.0	MINER	AL RESERVE ESTIMATES	50
16.0	MININ	G METHODS	51
17.0	RECOV	YERY METHODS	52
18.0	PROJE	CT INFRASTRUCTURE	53
19.0	MARK	ET STUDIES & CONTRACTS	54
20.0	ENVIR	ONMENTAL STUDIES, PERMITTING & SOCIAL OR COMMUNITY IMPACT	55
21.0	CAPITA	AL & OPERATING COSTS	56
22.0	ECONO	OMIC ANALYSIS	57
23.0	ADJAC	ENT PROPERTIES	58
24.0	OTHER	RELEVANT DATA & INFORMATION	59
25.0	INTER	PRETATION & CONCLUSIONS	60
26.0	RECON	/MENDATIONS	61
27.0	REFER	ENCES	63
DATE 8	& SIGNA	ATURE PAGE	65
CERTIF	ICATES		66
APPEN	DIX A		70
APPEN	DIX B		74

LIST OF FIGURES

Figure 1-1 Location	3
Figure 4-1 Location	9
Figure 4-2 Property Boundary	
Figure 4-3 Gunman Property	12
Figure 5-1 Regional Infrastructure	14
Figure 5-2 Central Gunman Property	15
Figure 7-1 District Geology	20
Figure 7-2 District Tertiary Age Igneous and Hydrothermal Activity	22
Figure 7-3 Property Geology	24
Figure 7-4 Stratigraphy of the Gunman Property	
Figure 7-5 Core Photos	27
Figure 7-6 Core Photos	28
Figure 7-7 Lithologic Details of Drill Hole GMRC-9	29
Figure 7-8 Cross section at RH Zone	30
Figure 7-9 MMIA Soil Samples in Relation to Mineralized Zones	32
Figure 9-1 MMIA Soil Sample Results	36
Figure 10-1 Drill Hole Locations	38
Figure 10-2 RH Zone Drill Hole Locations	41
Figure 26-1 GD-15 Target Area	62
Figure 26-2 BC-24 Target Area	62

LIST OF TABLES

Table 4-1 Gunman Property Unpatented Lode Claims	7
Table 7-1 XRD Identification of Minerals in Selected Gunman Property Assay Pulps	.33
Table 10-1 Key Intercepts from Gunman Property Drilling	.40
Table 12-1 Check Assay Comparison from Hole GMRC-9	.44
Table 12-2 Comparison of Holes GM-26 and GMRC-9	.46
Table 13-1 Acetic Acid Leach Test Results vs. ICP Assays	.48

$\mathsf{G}\,\mathsf{L}\,\mathsf{O}\,\mathsf{S}\,\mathsf{S}\,\mathsf{A}\,\mathsf{R}\,\mathsf{Y}$

UNITS OF MEASURE

Degrees Fahrenheit	°F
Gram	g
Part per million	ppm
Acre (43,560 square feet)	acre
Kilometer	km
Meter	m
Mile	mi
Foot (feet)	ft
Inch	in
Percent	%

ACRONYMS AND ABBREVIATIONS

Nevada Mining Claim	NMC
Bureau of Land Management	BLM
North	Ν
South	S
East	E
West	W
Below surface grade	bsg
Silica	SiO ₂
Gold	Au
Mercury	Hg
Zinc	Zn
Silver	Ag
Copper	Cu
Lead	Pb
Arsenic	As
Oxygen	0
Carbon	С
Hydrogen	Н

1.0 SUMMARY

The authors have prepared the *Gunman NI 43-101 Technical Report* (the report) at the request of Silcom Systems, Inc. (Silcom), detailing exploration results at the Gunman property located in White Pine County, Nevada. Silcom holds an option to acquire an 80% interest in the project from Cypress Development Corp. (Cypress), which owns the mineral rights to 23 unpatented lode mining claims covering an area of 470 acres. The project's location is shown on Figure 1-1. This report has been prepared in accordance with National Instrument 43-101 and Form 43-101F1.

This report updates Cypress' *Gunman Zinc-Silver Project National Instrument 43-101 Compliant Technical Report* (Marvin, 2014) with an effective date of March 17, 2014. The report discusses drilling completed by Cypress in 2014 and updates the overall scope of the project, and provides recommendations for further exploration work.

Drilling and surface sampling at the project resulted in the discovery of multiple zones with zinc and silver mineralization present over a strike length of roughly 2,500 feet. The northern most mineralization known at the project was discovered in 2007 and this mineralization remains underexplored. The reader or potential investor is cautioned that the Gunman property has no mineral resources and no estimates of mineral resources have been published on property.

The mineralization at the Gunman property closely resembles carbonate replacement style deposits that have central zones of massive mineralization flanked by halos of partial replacement and veining. These replacements are now strongly oxidized to around 400 feet in depth. Rare sulfide mineralization, sphalerite, pyrite and argentite, is found at the base of the oxidized portion of the mineralized zones tested. This mineralization is hosted by karsted, and locally decalcified, silty limestone of Permian age. Zinc and silver mineralized zones are bordered on the east by copper oxide mineralization hosted in a decalcified poly-lithic sandstone, also of Permian age.

The RH zone lies within the central portion of the 2,500-foot strike-length of identified mineralization. The RH zone exhibits near-surface mineralization averaging 16.7% Zn and 105 ppm silver over a down-hole length of 180 feet starting at 45 feet bsg in RC hole GMRC-16.

A potential analog to the zinc and silver mineralization at the Gunman property is found at the Eureka mining district, located 27 miles southwest of the project. A series of precious and base metal carbonate replacement deposits were mined historically at Eureka. These were first described by the USGS in 1884, and many times since, as intrusion related, carbonate replacement type. The deposits were mined as underground operations and were famous for notable grades of oxide mineralization containing lead, zinc, silver and gold. Also, unlike in the Eureka district, no intrusions are currently identified at the Gunman property.

Mineralization at the project is controlled by a series of NNE trending fault zones. This setting is found at other locations within the Carlin and Battle Mountain trends where north-south to NNE configurations of mineralization are seen in cross-cutting structural zones within or adjacent to the main NNW striking trends.

Jasperiod rubble outcrop protrudes at the surface along the western edge of the RH zone at the Gunman property. These exposed rocks are anomalous in Zn, Ag, Au, As, Cu, and Hg, a geochemical signature common in jasperoids within the controlling faults above and within Carlin-type gold deposits. The presence of these rocks initiated the first phase of modern exploration work at the project in 1990.

The carbonate and calcareous clastic sediments hosting the known mineralization lie on the east limb of a north striking syncline. This rock package dips steeply west into the nose of the syncline located in the western portion of the property. The syncline is cut by a series of NNE trending fault-fracture zones that appear to control the position of mineralization. Fracturing along the axis of the syncline has not been tested with drilling and represents one of the exploration targets on the property.

Several exploration targets and one zone for resource evaluation are identified as follows.

- 1. Supplementary drilling of the RH zone is recommended to provide confirmation for a resource estimation, and to obtain samples for metallurgical testing. A total of 1,500 feet of core drilling in three drill holes is recommended.
- 2. Additional drilling is recommended to determine if the RH zone extends to the north or south along trend. This drilling should systematically step-out in both directions and comprise ten RC holes totalling 5,000 feet.

The estimated budget for the above program, including drilling, permitting and reporting, is \$265,000. Depending upon results and budgetary constraints, subsequent drilling could be undertaken. Additional targets would include drilling north around hole GD-15, and along the trend south to hole BC-24 in the RH South zone. Down-dip testing of the east limb of the syncline from the RH zone, and the syncline axis to the west, remain attractive targets, as does the Far North target area.

The Gunman property is located on the margin of the Carlin Trend and contains zones of carbonate replacement style, zinc and silver oxide mineralization. Silcom intends to determine if an economic resource exists at the project and to potentially locate additional zinc or silver mineralization in target areas. Mapping by the USGS in 1963

and more recent mapping by previous operators indicate a carbonate conglomerate outcrops in the northern portion of the project. This unit appears to have acted as a cap rock during mineralization at the RH zone. The north part of the property remains underexplored at surface and beneath the cap rock. Exploration along the northeast trend of mineralization at the project represents an attractive target.

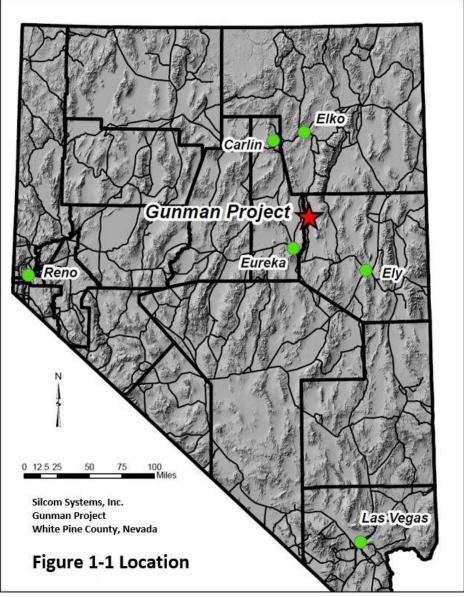


Figure 1-1 Location

2.0 INTRODUCTION

2.1 INTRODUCTION

Silcom Systems, Inc. (Silcom) presents the following, *Gunman NI 43-101 Technical Report* (the report) summarizing exploration drilling results and other pertinent data for the Gunman property near Eureka, Nevada. The report was prepared in compliance with the Canadian Institute of Mining (CIM) National Instrument 43-101 (NI 43-101) Standards of Disclosure for Mineral Projects.

2.2 TERMS OF REFERENCE

All drilling completed on the Gunman property to-date by all operators is 114 reverse circulation (RC) holes for 42,155 feet and 17 core holes totalling 11,516 feet for a total of 53,671 feet of drilling in 131 holes. The project is located within the eastern portion of White Pine County, Nevada.

The report is intended to provide a detailed accounting of all modern exploration at the Gunman property and to provide interpretations of the compiled data for the purposes of proposing additional development and exploration work for zinc and silver mineralization on the property. The authors utilized Marvin, 2014 in preparation of the report with Sections 7, 8, and 11 only receiving minor edits or additions for clarity. The authors were authorized to complete the report by Mr. Graeme O'Neill, President, Silcom.

2.3 SOURCES OF INFORMATION

In preparing the report, Silcom has relied on data provided by Cypress, from their completed exploration and historical research on the property, and on USGS and NBM reports in addition to information publicly available on websites of mining companies working in the area.

2.4 UNITS & CURRENCY

Throughout this report, measurements are in imperial units (feet and miles) for all down-hole drill data, including assay intervals. Drill hole collar locations are given in

UTM NAD 83 meters. Reporting in imperial and metric units is maintained for consistency with past technical reports. UTM meters are used for consistency and ease of use with other map data and GIS programs.

Zinc (Zn) values are presented as % Zinc and silver (Ag) assay values are presented as ppm Ag parts per million (ppm). For reference, 1 ppm equals 1 gram per tonne. Currency amounts for estimated costs of recommended additional work are quoted in US dollars unless otherwise noted.

The authors are not relying upon other experts for information except as follows:

• The authors in the preparation of Section 4 have not independently conducted any title or other searches, but have relied upon Silcom for information on the status of claims, property title, agreements, permit status, and other pertinent conditions.

The authors have reviewed and incorporated reports and studies as described within this report, and have adjusted information that required amending.

4.1 LOCATION

The Gunman property is located at 606300 East, 4414500 North, UTM NAD 83, Zone 11 North datum, in eastern White Pine County, Nevada. The project is 50 miles northeast of Eureka, Nevada and 78 miles south of Elko, Nevada (Figure 4-1). The project lies entirely within T23N, R55E, Mount Diablo Meridian and is accessed from paved county road 892.

4.2 MINERAL RIGHTS

The Gunman property consists of 23 unpatented lode mining claims. The claims lie in surveyed territory within portions of Sections 2, 11 and 14, T23N, R55E in eastern White Pine County, Nevada (Figure 4-2). The individual claims are 600 x 1,500 feet in size or 20.5 acres each and together cover an area of 470 acres. The claims require annual filing of an Intent to Hold and cash payments to the BLM and White Pine County totaling \$167 per claim. The claims are subject to a 2% NSR in favor of White Pine Minerals. Table 4-1 lists the unpatented lode claims at the project and associated Nevada Mining Claim (NMC) numbers.

Claim Name	NMC	Claim Name	NMC	Claim Name	NMC
GUNMAN #1	814693	GUNMAN #16	1100833	GUNMAN #82	1079815
GUNMAN #2	814694	GUNMAN #17	1100834	GUNMAN #83	1079813
GUNMAN #3	814695	GUNMAN #18	1100835	GUNMAN #84	1079816
GUNMAN #4	814696	GUNMAN #22	1079809		
GUNMAN #5	814697	GUNMAN #23	1079810		
GUNMAN #6	814698	GUNMAN #24	814716		
GUNMAN #7	814699	GUNMAN #25	814717		
GUNMAN #8	814700	GUNMAN #61	1079819		
GUNMAN #9	814701	GUNMAN #62	1079820		
GUNMAN #10	814702	GUNMAN #81	1079812		

Table 4-1 Gunman Property Unpatented Lode Claims

Cypress completed its 100% earn-in (less the 2% NSR) in 2000 by expending \$360,000 in exploration on the property. No annual expenditures or payments, other than those to the county and BLM are required for Cypress to retain the property.

On April 5, 2017, Cypress announced the execution of an option agreement with Silcom which provides Silcom an earn-in option to acquire an initial 51% interest in the Gunman property. Under the agreement, Silcom will issue 1,500,000 listed common shares and make cash payments of \$300,000 USD and incur exploration expenditure totaling \$1,850,000 USD over the three-year term. Cypress also granted Silcom a second option to acquire an additional 29% interest by issuing 500,000 listed common shares and making a cash payment of \$250,000 USD within 90 days of Silcom satisfying and exercising the first option and incurring additional exploration expenditures totaling \$1,100,000 USD within 12 months. The agreement is subject to TSX Venture Exchange acceptance and the shares of Silcom obtaining a Canadian stock exchange listing.

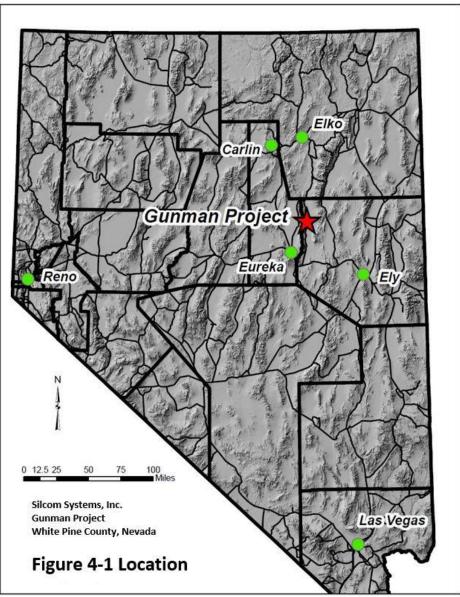


Figure 4-1 Location

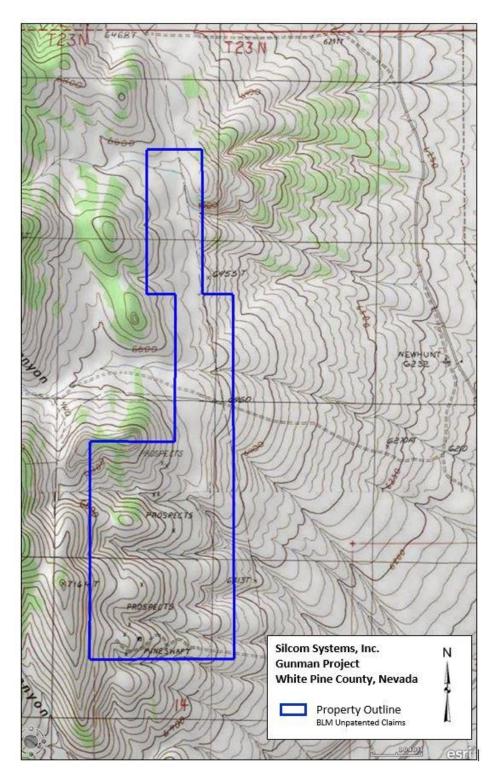


Figure 4-2 Property Boundary

4.3 TENURE RIGHTS

Silcom holds an option agreement for 23 unpatented lode mining claims shown in Figure 4-2. The claims are all in good standing with the BLM and White Pine County.

4.4 RESOURCES, RESERVES, DEVELOPMENT & INFRASTRUCTURE

The property is in a region of active open pit mining of sediment hosted gold deposits. Operators in the region include Kinross, Barrick and GRG.

There are no mineral resources defined on the Gunman property at present. Recommendations for additional drilling made in this report are in part designed to provide additional assay data needed to prepare a future resource estimation for the project.

The Bald Mountain mining complex, operated by Kinross, is located 10 miles east of the property (Figure 4-3). The Lone Mountain project, owned by Nevada Zinc Corporation, is located 31 miles west. Twelve miles north of Lone Mountain is the Mount Hope molybdenum project of General Moly Corporation. Base metal production from high-grade ores has occurred in the Bald Mountain area and in the Eureka district, including from zinc deposits at Eureka (Ruby Hill mine), Lone Mountain, and on the flanks of Mount Hope.

The property lies near paved roads, power lines and regional towns and cities that service the mining industry. Railroad lines are located 70 miles north of the project where they pass through the major mining centers of Carlin and Elko. The district has an extensive mining and prospecting culture and there is a ready source of experienced labor, and mining equipment.

4.5 LEGAL SURVEY

The 23 unpatented lode claims are survey tied to brass caps of the existing federal land survey in the area.

11

4.6 ENVIRONMENTAL LIABILITIES

The Gunman property is located on the east flank of the Diamond Mountain Range. The nearest mining activity is 10 miles east at the Bald Mountain Mine of Kinross. At the project, there are small pits and trenches from historical exploration on the property. None of these small disturbances appear to have any environmental liability. No buildings, mills, leach pads or other infrastructure have ever existed on the property. Several drill sites are present, most of which were reclaimed by Cypress, who operated under a 5-acre Notice-Level permit with the BLM.

4.7 PERMITS

A plan of operations and environmental permit for the disturbance required to conduct the exploration and metallurgical programs recommended in this report will need to prepared and approved with the BLM at the Ely, Nevada office.

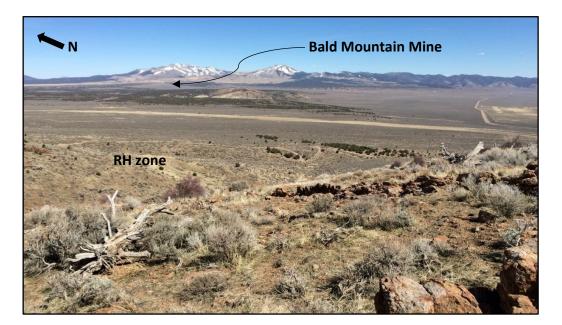


Figure 4-3 Gunman Property

Figure 4-3 is a view from the Gunman property looking east, RH zone in foreground with Kinross' Bald Mountain Mine in the distance.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE & PHYSIOGRAPHY

5.1 ACCESS

The project is located 50 miles northeast of Eureka, Nevada and 78 miles south of Elko, Nevada. Access from Eureka is via paved county road 892, with the last two miles over high-clearance dirt roads.

5.2 LOCAL RESOURCES

Mining towns of Eureka, Elko and Ely are all less than two hours drive from the project (Figure 5-1). Eureka (population 610) is a small mining town with access to US Highway 50 and the typical amenities of a town this size. Elko (population 20,300) is a regional mining and retail center with access to Interstate Highway 80, rail services and daily commercial flights.

Regional power grids run near the property. High voltage power lines serve the active Bald Mountain Mine, 10 miles east of the project.

5.3 CLIMATE

The regional climate is arid high desert, with temperatures ranging from lows of 10° F in winter to highs of above 90° F in summer. The climate is dry. Annual precipitation is between 8 to 12 inches, divided between summer thunder showers and winter rain and snow.

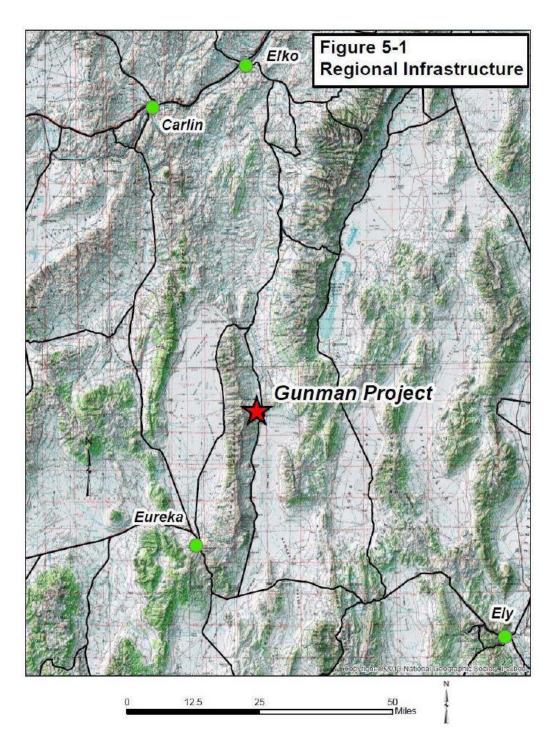


Figure 5-1 Regional Infrastructure

5.4 PHYSIOGRAPHY

The Gunman property is in the Great Basin physiographic region, a large area of basin and range topography. Steep narrow mountain ranges alternate with sloping to flat bottomed valley bottoms. The property is located at an elevation of 6,500 feet along the west edge of the Newark Valley at the base of the Diamond Mountain Range.

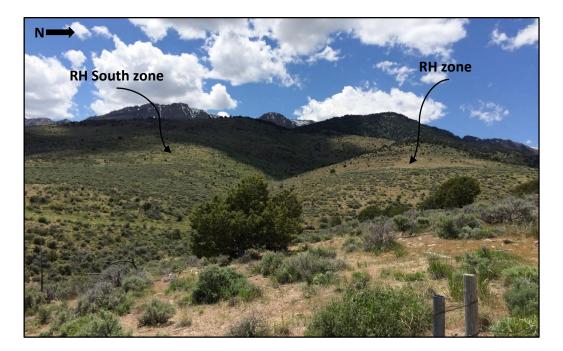


Figure 5-2 Central Gunman Property

Figure 5-2 is a view of the RH and RH south zones looking west toward the high country of the Diamond Mountain Range.

15

The outcropping, copper oxide showings at the Gunman property were explored by prospect pits and shallow shafts during the period from the 1860s to the 1940s. No production is recorded during this time. Western Mining Corporation (WMC) conducted an intensive, gold exploration program in the region in the late 1980s and early 1990s. During this work, WMC sampled jasperoids and other altered limestone outcrops exposed along the range front on what became the Gunman property. Anomalous Zn, Ag, Au, As, Cu, and Hg assays were returned in the surface assays from the property. These samples contained up to 0.5 ppm gold.

The geochemical signature of sampled jasperoids is typical of Carlin-type gold deposits and WMC staked claims covering several square miles centered on the mineralized outcrops and rubble crops at what became the RH zone. In 1990, WMC drilled a series of RC holes in and around the jasperoid exposures. Results showed zones of multipercent zinc and up to 2 ounces per ton silver. Gold values were generally low and erratic. WMC completed 26 holes on the property for a total of 9,335 feet. The zinc and silver mineralization was not of interest to WMC, who dropped their claims in 1996.

White Pine Minerals staked the property in 1999 and vended the claims to Cypress. In May, 2000 Cypress began an RC drilling program centered around the jasperoid area. The program was successful; Cypress discovered zinc grades greater than 10% over down-hole intervals exceeding 60 feet in length. Multi-ounce per ton silver values were also found with the zinc. The RH zone was partially outlined in September, 2000 and additional discoveries of multi-percent zinc were made at the RH South zone, located 800 feet south of the RH zone.

Later in 2000, Cypress continued drilling with close-spaced holes at the RH zone for both extension and infill. Hole GM-26 intersected a down-hole interval 175 feet in length averaging 15.7% Zn and 149 ppm Ag starting at 50 feet bsg. Individual sample intervals in GM-26, five feet in length, assayed up to 37% Zn and 505 ppm Ag. Hole GM-32, drilled on the north end of the RH zone, intersected an interval 120 feet in length and averaged 8.7% Zn and 51 ppm Ag, starting at 45 feet bsg. Cypress completed 32 RC drill holes for a total of 17,370 feet at the Gunman property during 2000.

Surface work by Cypress in 2001 included the collection of a grid of soil samples analyzed by mobile metal ion analysis (MMIA) method. The MMIA method was viewed as potentially effective in detecting bedrock mineralization in areas where recent soil or other regolith cover is present. In 2001, Cypress also received the results on XRD analyses and leach tests done by Cominco Ltd. on drill cuttings from 2000. The XRD results from three drill holes in the RH zone indicated that the zinc carbonate smithsonite ($ZnCO_3$) is most abundant. Leach tests on samples from one drill hole showed high solubility of the zinc in a solution of acetic acid. These studies are described later in the report.

In 2004, Cypress continued exploration within the 1,000-foot strike length containing the RH and RH South zones and tested the RH NW target identified by the MMIA soil samples from 2001. The 2004 program included 32 RC holes for 8,565 feet drilled. Targets on the north and northwest sides of the RH zone returned wide intervals of nominal zinc and silver mineralization, but no extension of the RH zone was identified. A series of angle holes were drilled to the west to test the area immediately under the MMIA NW RH target. These holes intersected minor zinc and silver mineralization in the upper portion, but underlying, oxidized carbonate units were essentially barren in positions under the RH NW target MMIA anomaly. Hole GM04-06 intersected a 25-foot interval of 0.26% Zn and 3 ppm Ag starting at surface. Drilling in the RH South zone area in 2004 found several zones of notable mineralization in positions along the south and east flank of the zone. Hole GM04-24 intersected a 15-foot interval of 1.1% Zn and 2.2 ppm Ag starting at 80 feet bsg.

In 2006, Cypress ran a Titan geophysical survey to identify targets of deeply buried mineralization. The survey was conducted over the north-south length the of property covering approximately 4,000 feet of strike length, and identified multiple strong conductors at depth below the RH and RH South zones, in addition to areas further south along the range front.

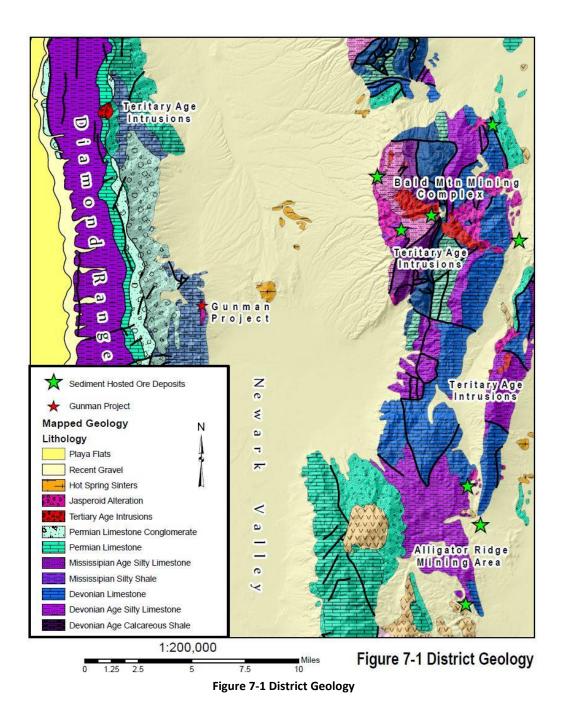
In 2007, core drilling tested targets identified in the Titan survey. Seventeen core holes were drilled totaling 11,516 feet. Eight of these holes, totaling 6,900 feet, were drilled to test the Titan anomalies which, in all cases, were found coincident with graphitic silty to shaley limestones and dolomitic rock units. The other nine holes were used to test targets at the RH South and RH zones, and at the RH North target. Between the RH South and RH zones, mineralization was intersected at the top of hole GM04-06 (2004) in an area interpreted as a feeder structure to the two zones. Vertical hole GD-15, intersected 206 feet of zinc mineralization starting at 146 feet bsg in sandy limestone, including 9.8 feet averaging 1.5% Zn and 14 ppm Ag starting at 154.3 feet bsg. GD-15 was the first hole to intersect greater than 1% Zn outside of the RH and RH South zones.

In 2014, Cypress released a NI 43-101 technical report (Marvin, 2014) on previous exploration and completed a drilling program focused primarily on the RH zone. Cypress drilled 24 RC holes totalling 6,890 feet, the results of which are described in

Section 10. Of the 24 holes, four were located on the RH North target (GMRC-1, 2, 6, 7) and two were located 160 feet west of the RH zone (GMRC-12, 13); all six holes failed to intersect noteworthy zinc values.

Of the remaining 18 holes in 2014, all were drilled in the RH zone, and all but three holes intersected intervals grading greater than 1% Zn. GMRC-22 extended the north end of the RH zone slightly by intersecting 45 feet averaging 21.4% Zn and 41 ppm Ag starting at 105 feet bsg. GMRC-24 extended the zone southwards by intersecting 40 feet of 7.9% Zn and 104 ppm Ag starting at 185 feet bsg. Both holes help demonstrate the erratic nature of the mineralization encountered, and the north-south ends of the zone may be open in both directions. GMRC-21 extended the zone westward slightly, intersecting 40 feet of 3.2% Zn and 6 ppm Ag, starting at 55 feet bsg. Overall, the 2014 program succeeded in extending the limits of the RH zone to an area measuring 110 feet in width by 350 feet in length along a north-south trend.

7.0 GEOLOGICAL SETTING & MINERALIZATION


7.1 DISTRICT GEOLOGY

The Gunman property lies within a complex sequence of Permian-age carbonate and calcareous clastic rocks units (Figure 7-1). The complex nature is the result of numerous erosional and angular disconformities within the sequence. The Permianage stratigraphy overlies chaotic clastic sequences of the Diamond Peak Formation. This formation consists of Mississippian-age clastic rocks that are related to the Antler Orogeny and emplacement and erosion of the Roberts Mountains Thrust and accompanying allochthon. The Mississippian sequence is bounded above and below by erosional unconformities.

Cambrian, Ordovician, Devonian, and lower Mississippian-age rocks lie below the Diamond Peak Formation (Figure 7-1). This lower sequence is not exposed along the eastern slope of the Diamond Mountain Range near the Gunman property. Abundant exposures occur to the east in the Bald Mountain and Alligator Ridge areas as well as in the Eureka area to the southwest.

The sequence of Cambrian through Permian-age rock-units are locally intruded by Tertiary-age stocks and dikes (Figure 7-1). Northwest trending stock complexes intrude the early Paleozoic-age rocks in the Bald Mountain and Alligator Ridge areas. A stock is also present in the Diamond Mountain Range northwest of the Gunman property. These stocks have a strong spatial relationship to jasperoid development and precious and base metal mineralization in the Bald Mountain, Alligator Ridge and Eureka mining areas. The intrusions at Eureka are older than those at Bald Mountain and Alligator Ridge, but the relationship is the same.

All Paleozoic-age rock units are deformed by several stages of compressional folding and faulting. Major folding events occurred in the late Devonian to early Mississippian time and again in the Mesozoic. Extensional deformation in the Tertiary has produced the present landforms, including the basin and range physiography. It was also responsible for igneous activity and related hydrothermal alteration and mineralization. This activity occurred early during the extensional deformation and predated the present basin and range landforms and active range front normal faults. One outcome of the mid-Tertiary extension was the opening of the Newark Valley, which moved the rock units at the Gunman property and Bald Mountain area further apart.

Three types of Tertiary-age hydrothermal activity occur in a northwest trending belt that includes the Gunman property (Figure 7-2).

1. *Large scale siliceous sinter mounds.* Siliceous and calcareous sinter deposits form a large set of hills that rise above the center of the Newark Valley and are seen in the valley southeast of Alligator Ridge. These mounds result from large

scale circulation of warm to hot groundwater and are likely related to igneous intrusions at depth.

- 2. Jasperoid and jasperoid breccias. Jasperoids result from intense silica replacement of limestone during hydrothermal alteration. They are often brecciated by episodic boiling during formation. Jasperoids are commonly directly related to calcareous hosted precious and base metal deposits in north central Nevada. Well-developed jasperoids with anomalous Zn, Ag, Au, As, Cu and Hg occur along the break in slope in the central portion of the Gunman property as well as within both the Bald Mountain and Alligator Ridge mining areas.
- 3. Decalcification and mineralization. Paleozoic-age calcareous sedimentary rocks (limestones, silty limestones, dolomites and carbonate cemented clastic units) have all been locally impacted by decalcification and silicification by Tertiary-age hydrothermal activity in the area encompassing Eureka-Bald Mountain and the Gunman property. Large areas of outcropping jasperoid breccias are associated with gold and base metal mineralization at Bald Mountain. Small areas of outcrop, rubble crop and subsurface intersection of jasperoid are associated with the zinc and silver mineralization at the project.

These hydrothermal features in the district are more common in a large northwest trending area that contains Tertiary-age intrusions. While no igneous rocks have yet to be found at the Gunman property, the intrusion mapped in the Diamond Mountain Range 10 miles north of the project is associated with copper-gold mineralization. Figure 7-2 displays the map pattern of Tertiary-age intrusions, hot spring sinters, jasperoid alteration and mineralization.

It is worth noting that the Tertiary-age igneous and hydrothermal activity occurred just at the onset of early Tertiary extensional deformation. Continued extension has now opened wide valleys and created numerous range-front normal faults, all of which occurred after the district-scale mineralization.

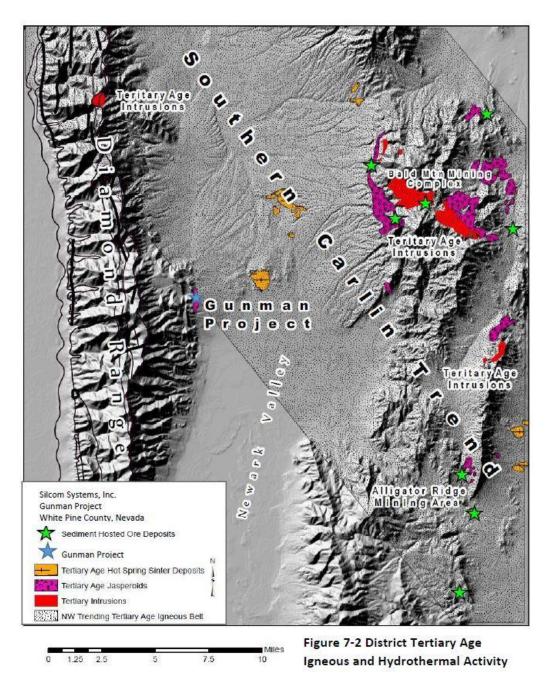


Figure 7-2 District Tertiary Age Igneous and Hydrothermal Activity

7.2 PROPERTY GEOLOGY

The Gunman property has abundant rock outcrops in the western portion of the property but is largely covered by recent alluvial deposits in the eastern portion. The outcropping rocks are all sedimentary in origin and not impacted by metamorphism.

Strong layering observed in certain units is original sedimentary bedding. The sedimentary rocks at the project were assigned a Permian age by regional mappers, as based upon fossil assemblages and correlation with stratigraphy in surrounding areas. No igneous rocks are seen on the property.

The sequence of Permian carbonate and clastic sediments have a complex depositional history that includes several major angular and erosional unconformities. Cypress interpreted a major angular unconformity in the western and northern portions of the property, which was possibly caused by thrusting of a flat lying carbonate conglomerate unit over a folded sequence of limestones and red bed sandstones. This contact is alternatively interpreted as a major erosional unconformity. This contact appears to have acted as hydrologic barrier during hydrothermal alteration and mineralization at the property. Thus, exploration for blind mineralization below the carbonate conglomerate cap unit along known mineralized trends represents a target for future exploration.

The geology of the Gunman property, as mapped by Cypress, is shown in Figure 7-3.

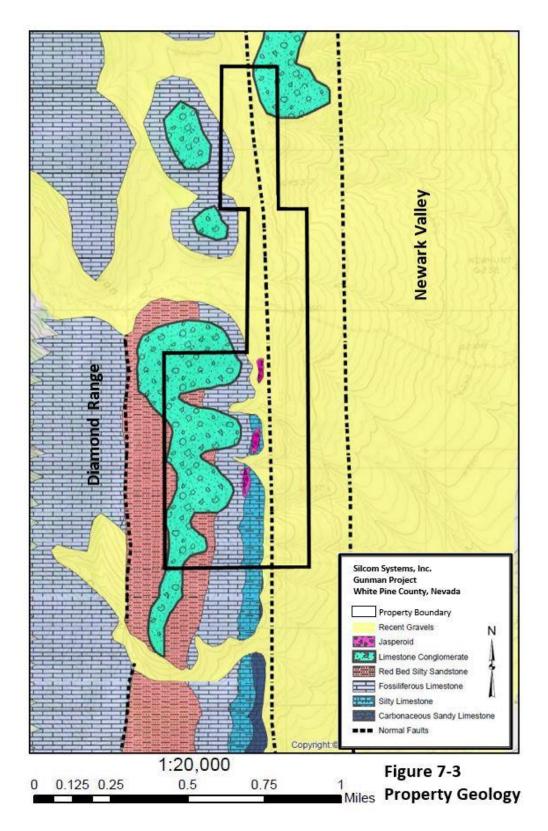


Figure 7-3 Property Geology

7.2.1 Property Rock Units

The Gunman property is underlain by a sequence of presumed Permian-age carbonate rocks and clastic sediments having a complex depositional history. Several major angular and erosional disconformities have been identified. A stratigraphic section for the property is presented in Figure 7-4 (Patterson, 2014). It begins with a lower most limestone - dolomite unit that is only locally exposed in the southern portion of the property. This is overlain by a silty limestone which passes upwards into a more massive fossiliferous limestone unit. The latter unit contains lenses of rounded, poly-lithic, carbonate-cemented sandstones. A sharp contact at the top of the fossiliferous limestone marks a change to a clastic sedimentary package of locally calcareous siltstone and sandstones. This package is ubiquitously oxidized to a red and orange yellow color. These units are folded into a north trending syncline whose fold axis lies in the western portion of the project.

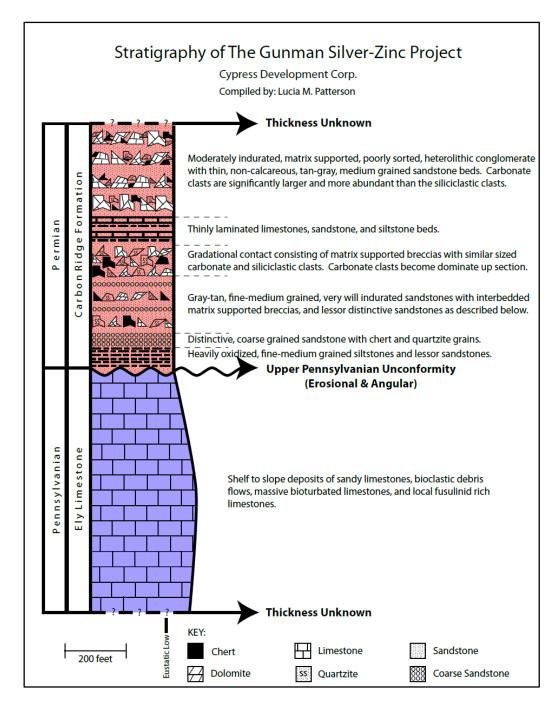


Figure 7-4 Stratigraphy of the Gunman Property

Lying above the sub-horizontal erosional or thrust surface at the top of the folded sequence is a nearly flat lying carbonate conglomerate unit. This is composed of inchscale, matrix-supported sub-rounded to sub-angular clasts set in a carbonate matrix. This unit appears to have acted as a cap rock, trapping mineralized hydrothermal fluids within the east flank of the syncline. A series of photos of rocks units from the project's core drilling are presented in Figure 7 and Figure 7-6. A lithologic log of RH zone hole GMRC-9 is shown in Figure 7-7.

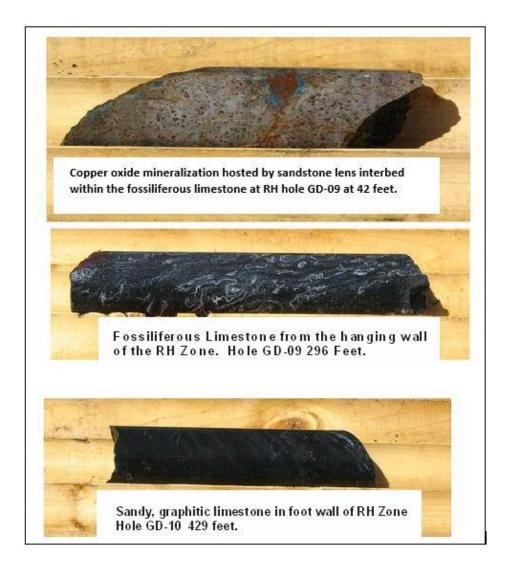


Figure 7-5 Core Photos

Figure 7-6 Core Photos

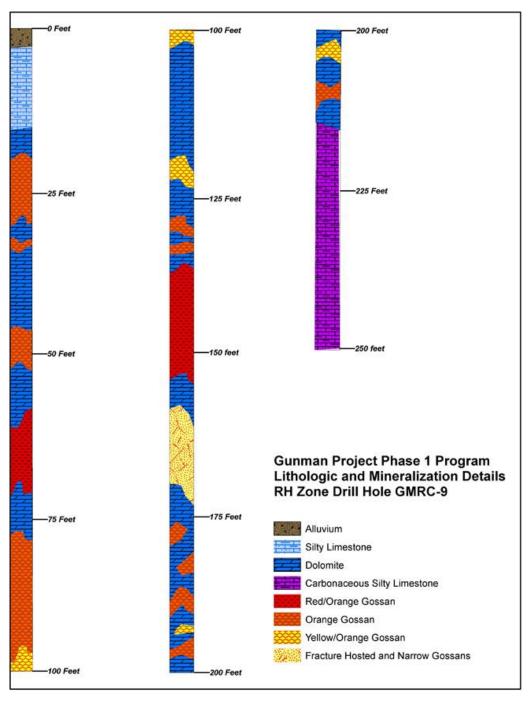


Figure 7-7 Lithologic Details of Drill Hole GMRC-9

7.2.2 Property Structure

The Permian-age rocks on the Gunman property were impacted by Paleozoic-age compression and by post mineral, mid Tertiary-age extension. No penetrative foliation or other metamorphic fabrics are evident.

A syncline with a roughly north-south axis traverses the property. The mineralization at RH zone and in adjacent areas all lie on the east flank of the syncline. The RH North zone is hosted in a down dropped section of the silty limestone and is a blind discovery located beneath recent alluvial cover (Figure 7-8).

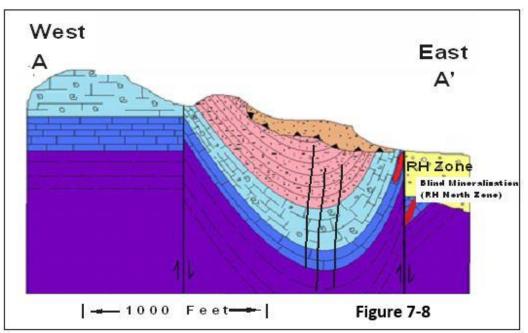


Figure 7-8 Cross section at RH Zone

Normal faulting and fracturing has occurred throughout the property. It is likely that these early structures formed pathways for mineralizing fluids. More recent normal faulting associated with regional extension produced the range front fault which cuts and displaces the RH North zone.

The main extension phase and resulting normal faults are likely much younger than the Zn-Ag mineralization. Consequently, they have probably off-set and down-dropped the mineralized zones into positions east of the range front fault and are now concealed beneath alluvial cover. The RH North zone is one example of mineralization being offset by later faulting. The amount of off-set on the range front fault near the RH zone is unknown but outcrops of Permian rocks occur on the down dropped side of the fault in the northern portion of the property. The mapped geology indicates the offset on this fault is less than 300 feet (Figure 7-3).

7.2.3 Alteration and Veining of Rock Units

Property scale alteration-mineralization is hosted by the silty limestone unit and within clastic lenses in the overlying fossiliferous limestone. Property scale zonation of two distinct types of alteration-mineralization is recognized:

- Dolomitization decalcification and jasperiod development is seen along a 3,000-foot strike length, within the RH zone silty limestone host, and locally within lenses of carbonate cemented sandstone in the overlying fossiliferous limestone. This alteration is intensified around and in the RH, RH North and RH south zones. All observed carbonate, oxide and sulfide zinc and silver mineralization is spatially associated with this alteration type. Surface and subsurface jasperiod alteration zones occur directly over known mineralized zones at the project.
- 2. Tension gash quartz-carbonate veining is observed as a distal halo around the west margin of the dolomitization-decalcification-jasperiod zone. The veining is best developed within the basal clastic unit of the over-thrust section. Copper oxide mineralization is present in this halo.

7.3 PROPERTY MINERALIZATION

Drilling on the Gunman property has identified zinc and silver mineralization along a trend 2,500 feet in length (Figure 7-9). The RH zone contains the highest grades of zinc mineralization encountered to date and has received the greatest concentration of drilling. Outcrop samples and drill intercepts of greater than 5% zinc were also encountered in the RH South zone. The RH North zone's exploration is limited to a few drill holes. The latter zone, approximately 1,500 feet north of the RH zone, contains multiple zones of zinc mineralization over a 206-foot interval starting at 146 feet bsg in hole GD-15. This mineralization was intersected below 140 feet of alluvial cover. In 2014, GMRC-1 and GMRC-2 tested the area east of GD-15 and encountered weak zinc mineralization. However, the three other directions have yet to be tested.

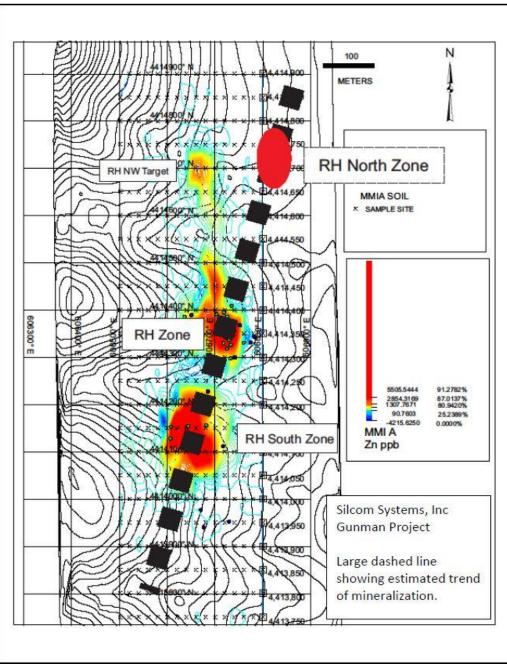


Figure 7-9 MMIA Soil Samples in Relation to Mineralized Zones

XRD analyses were done in 2001 by Cominco Ltd. for Cypress on assay sample pulps from RH zone holes GM-26, GM-27 and GM-29. The analyses identified smithsonite (ZnCO₃) as the most abundant zinc-bearing mineral, with minor amounts of hemimorphite (Zn₄Si₂O₇(OH)_{2*}H₂O). The analyses identified quartz, dolomite and calcite, in decreasing order of abundance, as the gangue minerals present. Results of the XRD study are presented in Table 7-1. It is also noted that a petrographic study on the rocks at the project has not been done. This should be considered in the future to better understand the mineralogy at the project.

Hole ID	From	То	Dolomite	Quartz	Calcite	Zn (%)	Smithsonite	Hemimorphite	Sphalerite
GM-26	105	110	significant	minor	minor	2.79	minor		
GM-26	145	150	minor	moderate	uncertain	35.3	significant	moderate	
GM-26	165	170	minor	significant		19	moderate	minor	
GM-26	205	210	moderate	moderate	significant	7.3	moderate	minor	
GM-26	210	215	minor	significant	significant	12.6	significant	very minor	moderate
GM-27	145	150	significant	moderate		3.54	minor	uncertain	
GM-27	150	155	significant	moderate	uncertain	12.95	moderate	minor	
GM-27	155	160	moderate	moderate		8.97	minor	minor	
GM-27	195	200	minor	moderate		28.5	significant	minor	
GM-29	25	30	minor	significant		6.62	minor	very minor	
GM-29	45	50	significant	moderate		6.92	moderate	very minor	
GM-29	60	65	significant	moderate	uncertain	11	moderate		
GM-29	150	155	moderate	significant	uncertain	17.6	moderate	moderate	
GM-29	155	160	moderate	moderate	moderate	9.5	minor	moderate	
GM-29	160	165	moderate	moderate	moderate	3.4	minor	minor	

Table 7-1 XRD Identification of Minerals in Selected Gunman Property Assay Pulps

The Tertiary-age mineralization at the Gunman property and in surrounding areas is epigenetic in origin and related to epithermal hydrothermal fluids which resulted in the observed alteration and metal deposition. At Bald Mountain and Eureka, precious and base metal deposits are genetically related to quartz monzonite intrusions. No intrusive rocks have been found on the project, and the nearest known intrusive unit is a quartz monzonite stock in the northern portion of the Diamond Mountain Range, 10 miles north of the project.

The Tertiary-age features related to intrusion and hydrothermal alteration of carbonate-rich wall rocks forms a northwest trending belt approximately 15 miles in width. This belt passes through the exposed jasperoid alteration and zinc and silver mineralization at the project.

At the Gunman property, most of the breccias in the mineralized zones are thought to be related to faulting, though some could represent gravity collapse features which are a common in many carbonate replacement deposits (Megaw, 2009).

The timing of jasperoid development and carbonate replacement mineralization at Gunman property shares many important characteristics with those in the nearby Bald Mountain mining area. Thus, it is likely that they share a common northwest trending, deep seated fault system control. However, potentially important differences also exist. The ore deposits at Bald Mountain are gold-rich compared to the zinc-rich mineralization at the project. Additionally, the Bald Mountain mineralization is hosted by Cambrian to Mississippian-age stratigraphy, whereas at the Gunman property, the mineralization occurs in Permian-age carbonate rocks.

Despite the age difference of the host rocks, however, both areas display jasperoid alteration, decalcification and mineralization of silty limestone units. Both areas contain graphitic carbonate units in areas below the level of oxidation. The zinc grades of the RH zone demonstrate the Permian-age rocks at the project are a favorable host for high-grade epithermal mineralization.

Exploration on the Gunman property has shown that drilling is the most reliable exploration tool. The RC and core drilling at the project are described in Section 6 and Section 10 of this report. The drilling was completed in a relatively small portion of the property around the known areas of mineralization. There has been no property-wide reconnaissance drilling. Cypress implemented a quality assurance and quality control program to ensure the sampling and analysis of all samples was conducted in accordance with best management practices.

Western Mining Corporation completed an induced polarization (IP) survey and drilled an IP target west of the RH zone without success. Cypress conducted a Titan survey and used down-hole electrical methods without success, concluding that the strong conductors observed are related to graphitic carbonate rocks below the oxidation zone. Cypress noted that a detailed gravity survey may be useful to determine the thickness of alluvial cover and the geometry of major faults. The results of these geophysical surveys are summarized in Section 6.

Cypress analyzed soil samples using MMIA assay methods, with the results provided on Figure 7.9 and Figure 9.1. The RH North zone was discovered in 2007 by drilling blind through alluvial cover along the trend of known mineralization. The MMIA soil sampling failed to detect the zinc and silver mineralization through the alluvial cover.

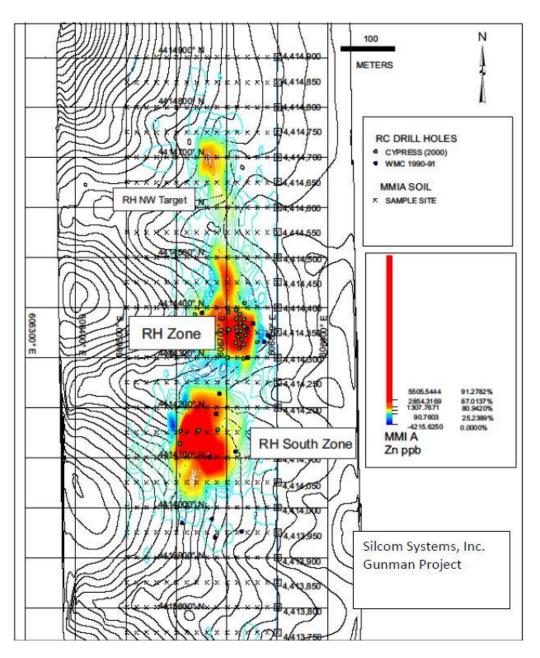


Figure 9-1 MMIA Soil Sample Results

10.0 DRILLING

10.1 PROPERTY DRILLING HISTORY

Drilling at the Gunman property can be grouped into five phases of drilling that occurred over 24 years. The drilling totals 53,671 feet in 131 core and RC holes as follows.

- 1990 by Western Mining Corp., 26 RC holes for 9,335 feet
- 2000 by Cypress, 32 RC holes for 17,365 feet
- 2004 by Cypress, 32 RC holes for 8,565 feet
- 2007 by Cypress, 17 core holes for 11,516 feet
- 2014 by Cypress, 24 RC holes for 6,890 feet

The locations and orientations of all drill holes associated with the property are listed in Appendix A, and their locations are shown on Figure 10-1.

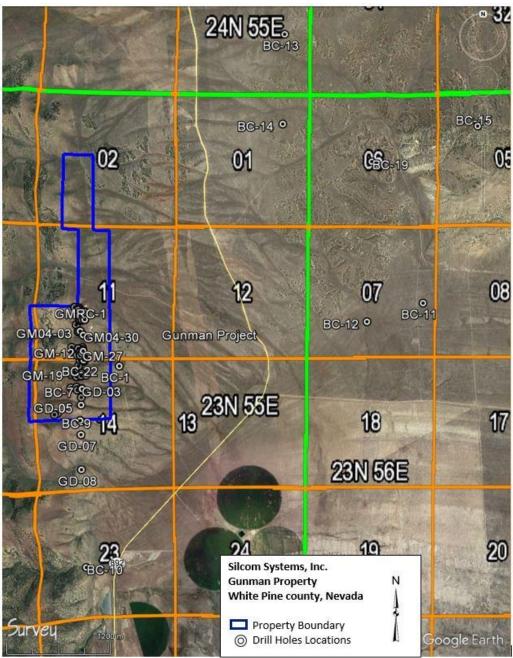


Figure 10-1 Drill Hole Locations

10.2 2014 CYPRESS DRILLING

In 2014, Cypress drilled 24 RC holes which were recommended in a NI 43-101 technical report published by Cypress earlier in that year (Marvin, 2014). The results of the program were cited in several press releases during 2014, and have not been included in any subsequent technical reports prior to this one.

The 2014 drilling program totaled 6,890 feet and focused primarily on the RH zone. Of the 24 holes drilled, four were located on the RH North target (GMRC-1, 2, 6, 7) and two were located 160 feet west of the RH zone (GMRC-12, 13). All six of these holes failed to intersect noteworthy zinc values.

Of the remaining 18 holes in 2014, all were drilled in the RH zone, and all but three intersected intervals grading more than 1% Zn.

- GMRC-22 extended the north end of the RH zone slightly by intersecting 45 feet averaging 21.4% Zn and 41 ppm Ag starting at 105 feet bsg.
- GMRC-24 extended the zone southwards by intersecting 40 feet of 7.9% Zn and 104 ppm Ag starting at 185 feet bsg. Both holes were key in demonstrating the mineralization is erratic and the north-south ends of the zone may be open in both directions.
- GMRC-21 extended the zone westward slightly, intersecting 40 feet of 3.2% Zn and 6 ppm Ag, starting at 55 feet bsg.

Overall, the 2014 program succeeded in extending the limits of the RH zone to an area measuring 110 feet in width by 350 feet in length along north-south trend.

10.3 KEY DRILL INTERCEPTS

Key intersections from all generations of drilling are listed in the table below. Apart from BC-24, in the RH South zone, all intersections are from the main RH zone (Figure 10-2). The intersections listed here were selected because they show the highest product of grade times thickness, with the sum product for each drill hole listed being greater than 500 feet-% Zn. The reader is advised that, with respect to resource definition and exploration potential, other drill holes may be equally or more noteworthy and the table below in no way represents an expectation for the thickness and average grades of mineralization. The reader is also cautioned to note that the lengths of the intervals listed are not true widths and the true widths of mineralization remain to be determined. A complete list of all drill intersections averaging greater than 1% Zn is given in Appendix B.

Drill Hole	From (feet)	To (feet)	Length (feet)	% Zn	Ag ppm
BC-16	125	185	60	10.96	45
BC-24 *	20	65	45	4.02	40
CM04 22	40	210	170	15 12	145
GM04-32	40	210	170	15.13	145
GM-01	160	210	50	9.47	60
GM-01	355	375	20	14.96	121
GM-07	105	165	60	9.88	57
GM-07	180	205	25	12.50	82
GM-09	130	195	65	6.78	49
GM-09	225	285	60	5.98	39
GM-26	50	225	175	15.66	149
GM-27	60	205	145	5.11	37
GM-28	5	175	170	9.97	51
GM-29	15	85	70	5.96	33
GM-29	140	180	40	6.47	33
GM-32	45	165	120	8.73	51
GMRC-4	20	175	155	8.70	48
GMRC-5	5	205	200	8.87	63
GMRC-9	50	225	175	11.99	121
GMRC-11	0	150	150	3.06	18
GMRC-11	165	215	50	7.87	126
GMRC-15	80	185	105	19.33	103
GMRC-16	45	225	180	16.74	105
GMRC-20	40	185	145	9.52	79
GMRC-22	105	150	45	21.38	41

Table 10-1 Key Intercepts from Gunman Property Drilling

Detailed Notes on Chemex Assay Procedures Used: A basic aqua regia-ICP multi-element package was run on 50 gram splits from 250-gram master pulps. Intervals assaying >100 grams/tonne silver and/or 1% zinc were rerun using a complete aqua regia digestion followed by ICP-AES analysis. Intervals assaying greater than 30% zinc following complete aqua regia digestion were then re-assayed from a fresh 50-gram pulp using classical titration methods.

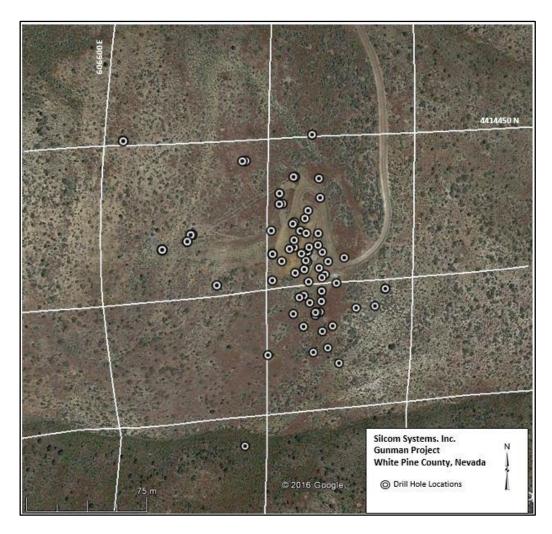


Figure 10-2 RH Zone Drill Hole Locations

11.0 SAMPLE PREPARATION, ANALYSIS & SECURITY

11.1 SAMPLE PREPARATION & ASSAVING

For RC drilling, sampling was done at the rig by continuously running all drill cutting through a splitter to obtain a representative sample of reasonable size for submission to the assay lab. The drilling in 2000 was done dry, without the injection of water. The dry cutting for each 5-foot interval was dumped from a catchment container on the rig through a standard Gilson splitter. The portion of the cuttings split for assays was caught in a metal pan below the splitter which was then emptied into a sample bag for shipment to the laboratory.

From 2004 onward, RC drilling was done with water injection. The water and cutting slurry was continuously run through a rotating cyclone splitter attached to the rig and the spit portion was collected directly into the sample bag attached to the cyclone.

In either case, a series of 5-foot sample splits in their own sealed bags were placed in larger rice bags to provide extra protection during shipment to the ALS Global laboratory in Elko or Reno, Nevada.

During core drilling in 2007, the following procedures were used. Sample lengths were all less than or equal to 5 feet. Broken pieces of core were fitted together end to end, then a cutting reference line was marked along the core perpendicular to bedding and structures. The sample start and end points were clearly marked with lumber crayon. The core was transferred to the cutting room, where it was sawn along the reference line and both halves were returned to the core box. The samples were selected by taking the back half of the core for each marked interval and placing it in a standard plastic sample bag. A sample tag was placed inside the sample bag with each sample and the sample number was written on the outside of the sample bag. The sample bags were bundled together in large woven polyethylene sacks sealed at the cutting site. The samples were delivered to ALS Global laboratory in Reno, Nevada by Cypress personnel.

All laboratories performing the analytical work were certified to ISO 9001 at the time of assaying. Silcom is independent from, and has no financial interest or holdings with ALS Global. Its relationship with ALS Global is at arms-length for assay work.

11.2 QUALITY ASSURANCE & QUALITY CONTROL

Certified reference materials were used by Cypress in their drill programs to provide assay standards as part of the QA/QC procedures for the Gunman property exploration programs.

Standard reference samples of known base-precious metal concentration were inserted by Cypress in the sample sequences at a rate of one standard sample per 30 samples. These standards are purchased in durable, pre-sealed aluminum packets. The assay results of the sample standards were monitored for all assay batches of samples from the project. These results fall within the expected range of variability, as provided by the manufacturer of the standards. No systematic errors in sample assay results are apparent or suspected.

Sample repeats were carried out as a process check by the laboratory. After the sample was crushed and pulverized, two sub-samples were selected for analysis. Sample duplicates are best used to monitor the analytical method used by the laboratory, and should not be relied upon to monitor the overall quality control of the sampling program. The variability between original assays and repeat assays should be low.

No sample duplicates of core at the Gunman property have been made, but the remaining half-core from 2007 is available for future QA/QC programs as needed.

11.3 SECURITY

For the 2014 drilling as well as Cypress' previous drilling programs, all RC samples were bagged for shipment at the drill site and collected several times a week by the sample preparation laboratory staff in Elko, Nevada. Drill core was transported from the drill to the logging facility by Cypress personnel. The logging facility consisted of a secured building in Eureka, Nevada.

The chip trays, pulps and core are currently stored on secure private property near Reno, Nevada with no public access.

43

Daniel Kalmbach conducted a site visit to the Gunman property on March 15, 2017 where he surveyed the project area and examined the locations of various drill holes. Mr. Kalmbach and Gerald Ray visited the project on May 25, 2017 where they viewed the property, select drill hole locations, and the surface exposure of zinc and silver mineralization at the RH and RH south zones.

Mr. Kalmbach discussed geological features of the deposit with Cypress personnel by phone and reviewed select geological logs and maps. His discussions with Cypress personnel also indicate the procedures used at the project for drilling, surface sampling and mapping meet current industry standards. Cypress maintains the split and whole core, chip trays, sample pulps, and select reject cuttings at a secure location near Reno, Nevada where they are available for future use.

Mr. Kalmbach chose four samples from drill hole GMRC-9 for independent assay to confirm the data. The sample pulps were sent to ALS Global in Reno, Nevada and the results of these check assays compare well with the original assays (Table 12-1).

Sample	From (ft)	To (ft)	Designation	Zn %	Ag ppm	Cu ppm	Ba ppm	Ca %
			Original	9.03	124	26	2550	13.1
229872	125	130	Check	9.26	123	23.5	2760	14.1
			Compare	103%	99%	90%	108%	108%
			Original	14.85	327	37	2880	5.93
229881	170	175	Check	15.7	313	37.6	3050	6.37
			Compare	106%	96%	102%	106%	107%
			Original	22.3	345	200	3380	1.85
229883	180	185	Check	23.7	332	215	3420	2.02
			Compare	106%	96%	108%	101%	109%
			Original	22.8	276	124	3270	2.13
229887	200	205	Check	24	271	131.5	3220	2.33
			Compare	105%	98%	106%	98%	109%

Table 12-1 Check Assay Comparison from Hole GMRC-9

Mr. Kalmbach reviewed Cypress' sample stream (blanks/standards) program from 2004 and 2007 and believes the program provides adequate confidence in the data at the current stage of the project. Locations and elevations of the drill holes were checked with Google Earth and Cypress maps. No errors were found.

Mr. Kalmbach reviewed the assay database and conducted spot checks on drill holes selected at random with drill logs and assay certificates. Only minor errors in the data were found (number transposition and misplaced decimals) these errors were corrected. The review was limited as only 44 of the 131 drill holes have assay certificates attributed to them in the database. His opinion is that the historical and current data is satisfactory for the purposes of preparing this report. Historical data (1990) is consistent with the recent data (2000-2014). The data is subjected to ongoing checks and is stored in a secured database.

The following additional work should be performed on the database. 1) Scan all available drill logs and re-log where data is missing, 2) chip trays and core should be photographed as an additional layer of preservation, 3) locate all assay certificates for drilling between 2000 and 2014, and attach sample numbers to assays in the main database, 4) a statistically significant check assay program should be conducted to further validate the database.

To further assess the variability of the overall sample data base, two holes were compared from different drilling campaigns, GM-26 (2000) and GMRC-9 (2014). These holes are 10 feet apart and both drilled vertically. Comparing an intercept of 185 feet from 45 to 230 feet bsg in each hole shows a grade of 11% Zn in GM-26 and 8.5% Zn in GMRC-9 for a difference of 23% in total grade. The holes in 2000 were drilled dry, whereas the 2014 drilling was done wet. The difference between wet and dry drilling may account for the apparent lower grades in the 2014 drilling (Table 12-2).

Foot	tage		Zn %				Ag PPM	
From	То	GM-26	GMRC-09	Compare		GM-26	GMRC-09	Compare
0	5	0.15	0.415	277%		1.2	2.1	175%
5	10	0.0924	0.518	561%		2.4	2.9	121%
10	15	 0.087	0.921	1059%		2.3	3.1	135%
15	20	 0.123	0.15	122%		2.7	1.2	44%
20	25	 0.1306	0.13	100%		3.1	2.2	71%
25	30	 0.1202	0.31	258%		2.8	2.3	82%
30	35	 0.0983	0.151	154%		3	1.8	60%
35	40	 0.1554	0.1335	86%		2.6	2	77%
40	45	 0.2682	0.111	41%		3.5	1.9	54%
45	50	0.5495	0.618	112%		6.5	4	62%
50	55	2.06	5.19	252%		9.9	26.1	264%
55	60	2.59	3.17	122%		11.6	9.3	80%
60	65	1.17	2.65	226%		7.8	16.9	217%
65	70	3.06	5.92	193%		8.9	13.3	149%
70	75	2.66	2.09	79%		21.1	13.5	64%
70		3.91	3.51	90%		37.7	13.6	04% 44%
75 80	80 85	8.05	6.4	90% 80%		28.9	45.5	
								157%
85	90	19.91	6.42	32%		67.3	33.9	50%
90	95	18.25	3.76	21%		96.7	31	32%
95	100	14.91	1.835	12%		84.2	20.4	24%
100	105	10.49	8.49	81%		85.6	82.8	97%
105	110	2.79	3.2	115%		31.2	35	112%
110	115	2.16	7.19	333%		29.3	45.3	155%
115	120	17.15	9.29	54%		189	63.2	33%
120	125	5.68	2.51	44%		61.2	30.1	49%
125	130	14.06	9.03	64%		173.6	124	71%
130	135	19.16	22.1	115%		188.7	154	82%
135	140	25.5	25.6	100%		222.7	146	66%
140	145	28.02	36.3	130%		207.5	299	144%
145	150	35.26	27.9	79%		171	156	91%
150	155	28.32	16.8	59%		127.1	92.7	73%
155	160	24.28	3.91	16%		181.1	54.3	30%
160	165	24.16	3.37	14%		195.5	70.4	36%
165	170	18.99	5.93	31%		169.8	143	84%
170	175	23.8	14.85	62%		210.7	327	155%
175	180	33.45	15.55	46%		496.7	371	75%
180	185	22.99	22.3	97%		392.2	345	88%
185	190	29.14	16.9	58%		256.1	192	75%
190	195	23.59	24.1	102%		505	272	54%
195	200	23.41	27.9	119%		341.4	379	111%
200	205	37.44	22.8	61%		162.9	276	169%
205	210	7.34	33.21	452%		163.5	231	141%
210	215	12.62	15.45	122%		212.9	49.1	23%
215	220	0.4441	2.91	655%		21.2	50.3	237%
220	225	1.24	1.085	88%		48.4	24.8	51%
225	230	0.5258	0.194	37%		18.4	14.6	79%
230	235	0.4258	0.578	136%		16.6	11.1	67%
235	240	0.392	0.133	34%		14.4	11	76%
235	245	 0.319	0.223	70%		11.2	4.7	42%
245	250	 0.5364	0.0305	6%		10.2	1.7	17%
Average		11.04	8.48	77%		10.2	86.1	81%
Intercep		11.04	0.40 11.36	77%		100.4	115.1	81%
mercep	(10311)	14.04	11.30	///0	I	141./	110.1	01/0

Table 12-2 Comparison of Holes GM-26 and GMRC-9

13.0 MINERAL PROCESSING & METALURGICAL TESTING

In 2001, Cypress received results from leaching tests done by Cominco Ltd. along with the XRD analyses described in Section 6 and Section 7.3 of this report. The leach tests were done on sample rejects from hole GM-26 and consisted of a 4-hour agitated leach (bottle roll test) using acetic acid at room temperature. Concentration of the acid or its consumption in each test was not given. The results, as seen in Table 13-1, show that the zinc appears readily soluble and compares closely with the ICP assays in all cases. Although there are no known operations using acetic acid as a leachate for zinc, the inference here is that the zinc is potentially recoverable via hydrometallurgical processing, which might include leaching with sulfuric acid or other acids or bases.

Other means of producing a marketable product from potential Gunman property material have not been studied and remain to be determined. Such methods, given the predominant mineral is zinc carbonate in the form of smithsonite, include gravity concentration, including spirals, tabling and dense media separation, and froth flotation. Such processing methods could potentially produce a marketable product on their own, or could be used to pre-concentrate project material prior to leaching.

If leaching is used, it remains to be determined what zinc end-product would be produced, and whether that product would be zinc metal, which would require a capital-intensive solvent extraction – electro-winning plant, or some form of less capital-intensive precipitation of the zinc from solution either as zinc-sulfate, zinc-carbonate or zinc-sulfide. Marketability and project economics will determine which of the above or other processing alternatives are viable or most attractive.

Hole ID	From (ft)	To (ft)	ICP Assays Zn %	Acetic Acid Leach Assays Zn %
GM-26	50	55	2.06	1.38
GM-26	55	60	2.59	1.52
GM-26	60	65	1.17	0.88
GM-26	65	70	3.06	2.43
GM-26	70	75	2.66	2.12
GM-26	75	80	3.91	3.36
GM-26	80	85	8.05	7.13
GM-26	85	90	19.91	16.78
GM-26	90	95	18.25	15.54
GM-26	95	100	14.91	12.68
GM-26	100	105	10.49	9.5
GM-26	105	110	2.79	2.48
GM-26	110	115	2.16	1.68
GM-26	115	120	17.15	13.95
GM-26	120	125	5.68	5.09
GM-26	125	130	14.06	12.52
GM-26	130	135	19.16	16.48
GM-26	135	140	25.5	23.17
GM-26	140	145	28.02	27.49
GM-26	145	150	35.26	34.4
GM-26	150	155	28.32	27.39
GM-26	155	160	24.28	22.92
GM-26	160	165	24.16	20.87
GM-26	165	170	18.99	15.71
GM-26	170	175	23.8	20.22
GM-26	175	180	33.45	32.84
GM-26	180	185	22.99	21.97
GM-26	185	190	29.14	28.16
GM-26	190	195	23.59	21.93
GM-26	195	200	23.41	22.26
GM-26	200	205	37.44	36.48
GM-26	205	210	7.34	6.64
GM-26	210	215	12.62	7.63
Interval A	verages		16.56%	15.02%

Table 13-1 Acetic Acid Leach Test Results vs. ICP Assays

The Gunman property's infrastructure currently consists of the state and county road system, which allows easy access to the property. No other infrastructure is planned or required at the time this report was prepared.

No environmental studies were conducted relevant to this report's content. Cypress holds a bond in place that covers surface disturbance of 5 acres or less under a Notice-Level permit with the Bureau of Land Management. Environmental and archeological studies, additional permitting and bonding may be needed for further exploration and development work on the project.

There are no adjacent properties to describe in the context of the Gunman property. No mineral resources or mineral reserves on adjacent properties are projected, estimated or otherwise included within this report.

24.0 OTHER RELEVANT DATA & INFORMATION

All relevant data and information regarding the Gunman property is discussed in the body of this report.

Based on observations made from outcrop and drilling, the authors are confident that the zinc and silver mineralization on the Gunman property represents the oxidized remains of original carbonate replacement deposits. These oxidized, mineralized zones resemble the descriptions of the base-precious metal deposits mined historically at the Eureka and Bald Mountain areas.

Quality exploration targets remain on the property. The area near hole GD-15 needs additional exploration drilling. Holes GMRC-01 and GMRC-02 encountered weak zinc mineralization east of GD-15, but the potential remains open in all other directions. The fault-fracture zone along the axis of the syncline west of the RH zone remains underexplored.

The pattern of the of Tertiary-age intrusions, large sinter mounds and jasperiod alteration strongly suggest a district-scale, northwest trending zone of concentrated Paleolithic hot springs, hydrothermal alteration and local precious and base metal mineralization passes through the Gunman property. This pattern indicates that the north part of the project should be explored in more detail.

The Gunman property has a sufficient size (470 acres) to accommodate a small-scale mining operation. The reader is cautioned that while the Gunman property is believed to have a good potential for hosting zinc-silver-rich mineralization capable of supporting a mining venture, the project faces the usual economic risks and uncertainties common to the precious and base metal exploration industry worldwide. One major risk is whether the current prices of zinc and silver are sustained; a fall in these metal prices would seriously impact the economic viability of any exploration-mining operation. Other uncertainties include the US Federal and State governments regarding their granting title and permits, as well as the legal requirements to undertake an exploration-mining program that would satisfy environmental and local community standards. It should be noted that environmental work, additional permitting and bonding may be necessary to further advance exploration and development work at the project.

The zinc and silver mineralization encountered in drilling at the RH zone substantiates continued work on the Gunman property. Further exploration work is recommended with the targets identified as follows.

- 1. Supplementary drilling the RH zone to provide confirmation for a resource estimation, and to obtain samples for metallurgical testing. A total of 1,500 feet of core drilling in three drill holes is recommended.
- 2. Additional drilling to determine if the RH zone extends to the north or south along trend. This drilling should systematically step-out in both directions and comprise ten RC holes totalling 5,000 feet.

The estimated cost for the recommended program, consisting of items (1) and (2) above, is \$265,000 as follows:

1.	Core drilling, RH zone, 1,500 feet:	\$90,000
2.	RC drilling, RH extensions, 5,000 feet:	\$100,000
3.	Resource estimation, report:	\$25,000
4.	Permitting and related costs:	\$50,000
Total		\$265,000

Depending upon results of the above program and budgetary constraints, further exploration could be undertaken on additional targets. This drilling could consist of holes to test the area north around GD-15 (Figure 26-1), and along trend to the south to hole BC-24 in the RH South zone (Figure 26-2). Areas down-dip on the east limb of the syncline from the RH zone, and along the syncline axis to the west, remain attractive targets. The Far North target area also remains untested by drilling.

Figure 26-1 GD-15 Target Area

Figure 26-2 BC-24 Target Area

27.0 REFERENCES

Brew, David A. (1971)

Mississippian Stratigraphy of the Diamond Peak Area, Eureka County, Nevada Geological Survey Professional Paper 661

Busch, D. J. (2001) Evaluation of the Gunman Project, Nevada, USA Private report for Cypress

Busch, D. J. (2001) Gunman Project; Nevada; Report and Data Private report for Cypress

Clark, Charles W. (undated) Big Canyon Project, White Pine County, Nevada Termination Report Private files WMC Corporation

Doerner, Bill (2006)

Geophysical Survey Data Analysis Report: Quantec Distributed Array System TITAN-24 MT and DC/IP SURVEY over the Gunman Project By Quantech Consulting, Inc. Private report for Cypress

Grauch V.J.S., Klein P. and Rodriguez B.D. (1998) Progress on Understanding the Crustal Structure Near the Battle Mountain-Eureka Mineral Trend from Geophysical Constraints USGS Open File Report 98-338

Hose R., Blake M. C. and Smith R. (1976) Geology and Mineral Resources of White Pine County, Nevada Nevada Bureau of Mines and Geology Bulletin 85

Manns, F.T. (2001) Geochemical and Stratigrar

Geochemical and Stratigraphic Aspects of the Gunman Zinc Occurrence. White Pine County, Nevada By Artesian Geological Research Private report for Cypress Marvin, Robert D. (2001) June 2001 Surface Prospecting Results and Recommendations Private report for Cypress

Marvin, Robert D. (2004)

Exploration Recommendations, Gunman Project, White Pine County, Nevada, USA By Red Rock Exploration Services Private report for Cypress

Marvin, Robert D. (2004)

Gunman Project 2004 Phase I Exploration Results and Phase II Recommendations, White Pine County, Nevada, USA By Red Rock Exploration Services Private report for Cypress

Marvin, Robert D. (2014)

Gunman Zinc-Silver Project National Instrument 43-101 Compliant Technical Report Public report for Cypress

Megaw, Peter K.M. (2009)

Evaluation of Oxidized Pb-Zn-Ag Carbonate Replacement Deposits of Mexico in Light of Supergene Zinc and Residual Lead Enrichment Processes Society of Economic Geologists, Special Publication, pp. 51–58

O'Brian, Neil (2001)

X-ray Diffraction analysis on Gunman Samples By Cominco Ltd., Exploration Research Labs Private report for Cypress

Patterson, Lucia M. (2014)

Stratigraphic Evaluation of the Gunman Zinc-Silver Project, White Pine County, Nevada Private report for Cypress

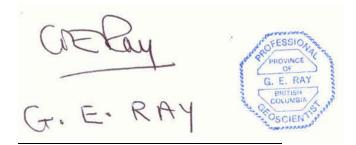
Webster, Blaine (2007)

Report on Bore Hole IP/Resistivity Surveys Gunman Project, Elko-Eureka Area, Nevada By JVX, Ltd.

Private report for Cypress

Western Mining Corp. Reports, files, maps, plans, sections, and survey data

DATE & SIGNATURE PAGE


This report titled *"Gunman NI 43-101 Technical Report"* and dated May 30, 2017, was prepared and signed by the following authors:

Date effective as of May 30, 2017.

1).

Daniel W. Kalmbach, CPG

Gerald E. Ray, Ph.D., P.Geo

CERTIFICATES

I, Daniel W. Kalmbach, do hereby certify that:

- I am currently self-employed as a Professional Geologist at: 632 Detters Road Twin Falls, Idaho 83301
- 2. I am a graduate of the College of Mining and Earth Resources at the University of Idaho with a Bachelor of Science in Geology (1999).
- 3. I am a member in good standing and Certified Professional Geologist (CPG-11732) with the American Institute of Professional Geologists.
- 4. I have worked as a geologist for a total of 17 years since my graduation from university; as an employee of two mining companies, two full-service environmental consulting firms, an exploration and development company, and as a consulting geologist.
- 5. I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 6. I am an author of the technical report titled "*Gunman NI 43-101 Technical Report*" dated May 30, 2017 with an effective date of May 30, 2017 (the "Technical Report"). I take responsibility for the information in all Sections and the overall composition of the Technical Report.
- 7. I visited the Gunman property on March 15, 2017 and May 25, 2017. I have been involved with the due diligence work on the property that is the subject of this Technical Report since February 1, 2017.
- 8. As of the effective date of the Technical Report, I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.
- 9. I am independent of the Issuer as defined in Section 1.5 of NI 43-101 and in Section 1.5 of the Companion Policy to NI 43-101.
- 10. I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.

11. I consent to the filing of the Technical Report with any stock exchanges or other regulatory authority and any publication by them, including electronic publication in the public company files on the websites accessible by the public, of the Technical Report.

Dated May 30, 2017

Daniel W. Kalmbach, CPG

Gerald E. Ray, Ph.D., P.Geo. 2243 McNeill Avenue, Victoria, BC, CANADA V8S 2Y7 Telephone 1 250 507 7655. Email: geray@shaw.ca

I, Gerald Edwin RAY, P.Geo., P. Eng., do hereby certify that:

- I was contracted by Silcom president, Mr. Graeme O'Neill of 137 Ranelagh Ave, Burnaby, BC, V5B 3N2 to work as an independent consulting geologist and be a joint author of this NI 43-101 technical report.
- I graduated with a B.Sc., degree in Geology from the University of Bristol (UK) in 1966 and obtained a Ph.D., from the "Research Center for African Geology" at the Leeds University (UK) in 1970.
- (iii) I am a member of the Association of Professional Geoscientists of British Columbia (License # 19503) and the Association of Professional Engineers of Saskatchewan (Member No. 2888).
- (iv) I have worked as a field and economic geologist for a total of 45 years since my graduation from university. This has involved employment with government geological surveys (Malawi, Saskatchewan and British Columbia) and with junior and major exploration companies including Rio Tinto Zinc, Falconbridge and Billiton Minerals. This work included exploration for Archean and Proterozoic greenstone-hosted gold, Cu-Au skarns, IOCG's, Cu porphyries and Au-Ag epithermal and mesothermal deposits.
- I have read the definition of "qualified person" set out in the National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with professional associations (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- (vi) I, together with co-author Daniel Kalmbach, am fully responsible for all items in this document and for the preparation of all sections of this document titled "Gunman NI 43-101 Technical Report" by Daniel Kalmbach and Gerald Ray dated May 30, 2017 (the "Technical Report"). I visited the Gunman Zn-Ag property on May 25, 2017.
- (vii) I have not had any prior involvement with the property that is the subject of the Technical Report.
- (viii) As of May 30, 2017, I am not aware of any material fact or material changes with respect to the subject matters of the Technical Report that is not reflected in the

Technical Report, the omission to disclose which makes the Technical Report misleading.

- (ix) I am independent of the issuer applying all the tests in section 1.5 of the National Instrument 43-101.
- (x) I have read National Instrument 43-101 and Form 43-101Fl, and the Technical Report has been prepared in compliance with that instrument and form.
- (xi) I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in public company files on their websites accessible by the public, of the Technical Report.

G. E. RAY ESSIO PROVINCE G. E. RAY COLUMBIA SCIEN

APPENDIX A

Year	Company	Hole No.	Drill Type	Easting (m)	Northing (m)	Elevation (ft)	Dip	Az	Depth (ft)
1990	WMC	BC-1	RC	607162	4414231	6317	90	0	500
1990	WMC	BC-2	RC	606781	4414344	6478	45	290	400
1990	WMC	BC-3	RC	606651	4414390	6568	60	250	400
1990	WMC	BC-4	RC	606676	4413941	6535	90	0	300
1990	WMC	BC-5	RC	606611	4413970	6590	90	0	300
1990	WMC	BC-6	RC	606670	4413978	6547	90	0	220
1990	WMC	BC-7	RC	606730	4413952	6505	60	280	200
1990	WMC	BC-8	RC	606717	4414112	6498	90	0	300
1990	WMC	BC-9	RC	606713	4413573	6470	90	0	300
1990	WMC	BC-10	RC	606775	4411758	6160	90	0	300
1990	WMC	BC-11	RC	610885	4415055	6180	90	0	500
1990	WMC	BC-12	RC	610193	4414815	6180	90	0	495
1990	WMC	BC-13	RC	609121	4418304	6180	90	0	400
1990	WMC	BC-14	RC	609113	4417170	6180	90	0	400
1990	WMC	BC-15	RC	611493	4417211	6180	90	0	365
1990	WMC	BC-16	RC	606740	4414358	6505	90	0	500
1990	WMC	BC-17	RC	606752	4414368	6495	90	0	425
1990	WMC	BC-18	RC	606685	4414228	6465	90	0	400
1990	WMC	BC-19	RC	610214	4416773	6180	90	0	150
1990	WMC	BC-20	RC	606781	4414344	6478	60	290	500
1990	WMC	BC-21	RC	606774	4414332	6478	45	290	300
1990	WMC	BC-22	RC	606742	4414301	6478	60	280	200
1990	WMC	BC-23	RC	606667	4414102	6545	45	255	440
1990	WMC	BC-24	RC	606667	4414102	6545	90	0	400
1990	WMC	BC-25	RC	606717	4414112	6498	45	255	400
1990	WMC	BC-26	RC	606680	4414188	6510	90	0	240
2000	Cypress	GM-01	RC	606737	4414345	6505	90	0	440
2000	Cypress	GM-02	RC	606737	4414345	6505	45	270	525
2000	Cypress	GM-03	RC	606644	4414155	6539	90	0	525
2000	Cypress	GM-04	RC	606644	4414155	6539	45	270	545
2000	Cypress	GM-05	RC	606431	4413651	6730	45	70	500
2000	Cypress	GM-06	RC	606464	4413668	6705	45	70	480
2000	Cypress	GM-07	RC	606735	4414362	6517	90	0	800
2000	Cypress	GM-08	RC	606734	4414378	6510	90	0	505
2000	Cypress	GM-09	RC	606733	4414327	6504	90	0	505

List of all drill holes, collar locations and orientations.

Silcom Systems, Inc.

Gunman NI 43-101 Technical Report

Year	Company	Hole No.	Drill Type	Easting (m)	Northing (m)	Elevation (ft)	Dip	Az	Depth (ft)
2000	Cypress	GM-10	RC	606761	4414331	6487	90	0	805
2000	Cypress	GM-11	RC	606732	4414298	6478	90	0	605
2000	Cypress	GM-12	RC	606735	4414410	6510	90	0	745
2000	Cypress	GM-13	RC	606704	4414357	6527	90	0	475
2000	Cypress	GM-14	RC	606703	4414391	6535	90	0	705
2000	Cypress	GM-15	RC	606636	4414386	6578	90	0	650
2000	Cypress	GM-16	RC	606636	4414386	6578	55	90	1005
2000	Cypress	GM-17	RC	606669	4414359	6547	90	0	705
2000	Cypress	GM-18	RC	606701	4414300	6495	90	0	605
2000	Cypress	GM-19	RC	606608	4414153	6570	90	0	705
2000	Cypress	GM-20	RC	606607	4414128	6595	90	0	545
2000	Cypress	GM-21	RC	606682	4414156	6510	90	0	345
2000	Cypress	GM-22	RC	606682	4414156	6510	45	270	505
2000	Cypress	GM-23	RC	606725	4414319	6496	90	0	345
2000	Cypress	GM-24	RC	606729	4414337	6505	90	0	605
2000	Cypress	GM-25	RC	606728	4414353	6515	90	0	340
2000	Cypress	GM-26	RC	606727	4414369	6523	90	0	485
2000	Cypress	GM-27	RC	606726	4414387	6522	90	0	200
2000	Cypress	GM-28	RC	606719	4414378	6522	90	0	445
2000	Cypress	GM-29	RC	606719	4414360	6518	90	0	505
2000	Cypress	GM-30	RC	606722	4414342	6510	90	0	505
2000	Cypress	GM-31	RC	606718	4414330	6507	90	0	405
2000	Cypress	GM-32	RC	606719	4414395	6525	90	0	305
2004	Cypress	GM04-01	RC	606684	4414438	6494	70	75	350
2004	Cypress	GM04-02	RC	606686	4414438	6494	50	80	280
2004	Cypress	GM04-03	RC	606699	4414648	6494	60	270	250
2004	Cypress	GM04-04	RC	606680	4414643	6494	45	70	200
2004	Cypress	GM04-05	RC	606703	4414784	6511	45	270	630
2004	Cypress	GM04-06	RC	606693	4414776	6527	45	290	470
2004	Cypress	GM04-07	RC	606680	4414900	6511	45	270	220
2004	Cypress	GM04-08	RC	606696	4414908	6501	60	250	195
2004	Cypress	GM04-09	RC	606681	4414900	6511	90	0	210
2004	Cypress	GM04-10	RC	606681	4414900	6511	60	250	180
2004	Cypress	GM04-11	RC	606645	4414930	6550	90	0	160
2004	Cypress	GM04-12	RC	606644	4414930	6550	45	260	590
2004	Cypress	GM04-13	RC	606691	4414926	6488	45	260	300
2004	Cypress	GM04-14	RC	606680	4414643	6494	90	0	200
2004	Cypress	GM04-15	RC	606682	4414643	6494	45	260	170
2004	Cypress	GM04-16	RC	606681	4414643	6494	60	260	90
2004	Cypress	GM04-17	RC	606718	4414425	6511	90	0	200

Silcom Systems, Inc.

Gunman NI 43-101 Technical Report

Year	Company	Hole No.	Drill Type	Easting (m)	Northing (m)	Elevation (ft)	Dip	Az	Depth (ft)
2004	Cypress	GM04-18	RC	606717	4414425	6511	60	255	200
2004	Cypress	GM04-19	RC	606734	4414423	6498	60	260	250
2004	Cypress	GM04-20	RC	606745	4414318	6478	90	0	400
2004	Cypress	GM04-21	RC	606750	4414289	6478	90	0	400
2004	Cypress	GM04-22	RC	606773	4414116	6501	90	0	320
2004	Cypress	GM04-23	RC	606690	4414108	6527	90	0	250
2004	Cypress	GM04-24	RC	606690	4414108	6527	45	250	150
2004	Cypress	GM04-25	RC	606708	4414408	6537	90	0	230
2004	Cypress	GM04-26	RC	606710	4414408	6537	70	80	280
2004	Cypress	GM04-27	RC	606611	4414454	6593	90	0	230
2004	Cypress	GM04-28	RC	606708	4414415	6530	45	260	200
2004	Cypress	GM04-29	RC	606729	4414452	6521	90	0	250
2004	Cypress	GM04-30	RC	606734	4414602	6488	90	0	300
2004	Cypress	GM04-31	RC	606656	4414723	6557	45	260	200
2004	Cypress	GM04-32	RC	606727	4414374	6524	90	0	210
2007	Cypress	GD-01	Core	606734	4414329	6500	90	0	1896
2007	Cypress	GD-02	Core	606722	4414141	6501	90	0	538
2007	Cypress	GD-03	Core	606722	4413959	6494	90	0	728
2007	Cypress	GD-04	Core	606722	4413851	6510	90	0	554
2007	Cypress	GD-05	Core	606722	4413761	6480	90	0	748
2007	Cypress	GD-06	Core	606722	4413566	6473	90	0	348
2007	Cypress	GD-07	Core	606722	4413402	6465	75	185	938
2007	Cypress	GD-08	Core	606721	4412970	6360	65	180	1148
2007	Cypress	GD-09	Core	606704	4414375	6530	65	280	646
2007	Cypress	GD-10	Core	606704	4414375	6530	70	90	1158
2007	Cypress	GD-11	Core	606704	4414375	6530	67	131	607
2007	Cypress	GD-12	Core	606727	4414402	6517	45	50	322
2007	Cypress	GD-13	Core	606736	4414329	6499	70	270	400
2007	Cypress	GD-14	Core	606733	4414329	6501	50	280	177
2007	Cypress	GD-15	Core	606724	4414784	6511	90	0	456
2007	Cypress	GD-16	Core	606724	4414784	6511	60	195	443
2007	Cypress	GD-17	Core	606719	4414880	6527	90	0	407
2014	Cypress	GMRC-1	RC	606754	4414788	6539	90	0	540
2014	Cypress	GMRC-2	RC	606752	4414787	6539	75	270	300
2014	Cypress	GMRC-3	RC	606717	4414394	6526	90	0	180
2014	Cypress	GMRC-4	RC	606722	4414389	6526	90	0	190
2014	Cypress	GMRC-5	RC	606715	4414377	6526	90	0	210
2014	Cypress	GMRC-6	RC	606751	4414877	6542	75	270	220
2014	Cypress	GMRC-7	RC	606753	4414881	6546	65	90	690
2014	Cypress	GMRC-8	RC	606737	4414355	6506	90	0	240

Silcom Systems, Inc.

Gunman NI 43-101 Technical Report

Year	Company	Hole No.	Drill Type	Easting (m)	Northing (m)	Elevation (ft)	Dip	Az	Depth (ft)
2014	Cypress	GMRC-9	RC	606727	4414367	6519	90	0	250
2014	Cypress	GMRC-10	RC	606725	4414362	6516	90	0	250
2014	Cypress	GMRC-11	RC	606728	4414377	6516	90	0	270
2014	Cypress	GMRC-12	RC	606654	4414394	6566	75	250	110
2014	Cypress	GMRC-13	RC	606653	4414394	6566	60	250	70
2014	Cypress	GMRC-14	RC	606747	4414350	6492	90	0	440
2014	Cypress	GMRC-15	RC	606737	4414337	6491	90	0	440
2014	Cypress	GMRC-16	RC	606723	4414373	6509	90	0	230
2014	Cypress	GMRC-17	RC	606737	4414373	6508	90	0	270
2014	Cypress	GMRC-18	RC	606734	4414386	6508	90	0	250
2014	Cypress	GMRC-19	RC	606725	4414343	6501	90	0	250
2014	Cypress	GMRC-20	RC	606718	4414383	6520	90	0	210
2014	Cypress	GMRC-21	RC	606710	4414369	6520	90	0	210
2014	Cypress	GMRC-22	RC	606725	4414397	6518	90	0	210
2014	Cypress	GMRC-23	RC	606741	4414366	6500	90	0	260
2014	Cypress	GMRC-24	RC	606738	4414314	6481	90	0	600

Drill Hole	From (feet)	To (feet)	Length (feet)	% Zn	Ag ppm
BC-2	195	210	15	11.91	36
BC-16	125	185	60	10.96	45
BC-17	395	400	5	1.35	21
BC-21	180	200	20	6.46	24
BC-23	5	10	5	2.25	13
BC-24	20	65	45	4.02	40
BC-24	80	85	5	2.88	18
GD-01	193	198.2	5.2	5.75	59
GD-01	240.8	279	38.2	5.95	127
GD-01	317.1	327	9.9	1.52	9
GD-11	101.5	117.5	16	1.10	0
GD-11	173	217	44	3.89	18
GD-13	61	62	1	3.36	30
GD-13	76	91	15	3.99	8
GD-14	74.1	78.5	4.4	2.40	11
GD-15	145.8	164.1	18.3	1.06	5
GD-15	227.5	230.4	2.9	1.54	9
GM04-23	170	175	5	2.93	1
GM04-24	85	90	5	2.21	3
GM04-26	155	160	5	1.39	2
GM04-32	0	10	10	2.71	9
GM04-32	40	210	170	15.13	145
GM-01	140	145	5	1.10	5
GM-01	160	210	50	9.47	60
GM-01	355	375	20	14.96	121
GM-02	135	155	20	5.86	7
GM-07	70	80	10	1.82	4
GM-07	105	165	60	9.88	57
GM-07	180	205	25	12.50	82
GM-07	410	415	5	1.54	23
GM-08	150	165	15	1.53	96

All drill intersections averaging greater than 1% Zn

Silcom Systems, Inc. Gunman NI 43-101 Technical Report

May 2017

74

Drill Hole	From (feet)	To (feet)	Length (feet)	% Zn	Ag ppm
GM-08	185	225	40	7.00	80
GM-09	130	195	65	6.78	49
GM-09	225	285	60	5.98	39
GM-09	300	325	25	2.86	26
GM-13	70	120	50	2.11	2
GM-13	215	225	10	2.05	2
GM-13	320	340	20	1.07	2
GM-14	105	110	5	3.90	1
GM-16	360	380	20	2.53	2
GM-19	0	15	15	1.89	6
GM-19	220	230	10	3.08	15
GM-24	60	95	35	8.94	51
GM-24	170	175	5	1.82	21
GM-24	360	385	25	3.44	29
GM-25	150	155	5	6.17	14
GM-26	50	225	175	15.66	149
GM-27	25	30	5	1.88	14
GM-27	60	205	145	5.11	37
GM-28	5	175	170	9.97	51
GM-29	15	85	70	5.96	33
GM-29	140	180	40	6.47	33
GM-30	35	50	15	11.18	43
GM-31	40	55	15	9.80	42
GM-32	45	165	120	8.73	51
GMRC-2	245	250	5	1.28	7
GMRC-3	55	95	40	2.04	60
GMRC-3	115	120	5	1.08	6
GMRC-3	140	155	15	3.16	33
GMRC-4	20	175	155	8.70	48
GMRC-5	5	205	200	8.87	63
GMRC-8	130	185	55	6.49	54
GMRC-9	50	225	175	11.99	121
GMRC-10	55	80	25	4.58	24
GMRC-10	105	120	15	1.70	8
GMRC-10	140	150	10	1.22	6
GMRC-10	170	220	50	8.71	20
GMRC-11	0	150	150	3.06	18
GMRC-11	165	215	50	7.87	126
GMRC-15	80	185	105	19.33	103

Silcom Systems, Inc. Gunman NI 43-101 Technical Report

Drill Hole	From (feet)	To (feet)	Length (feet)	% Zn	Ag ppm
GMRC-15	345	355	10	1.22	22
GMRC-15	375	400	25	1.89	30
GMRC-16	0	20	20	1.75	8
GMRC-16	45	225	180	16.74	105
GMRC-17	0	5	5	1.10	5
GMRC-18	155	165	10	1.62	9
GMRC-20	5	20	15	2.02	11
GMRC-20	40	185	145	9.52	79
GMRC-21	55	95	40	3.19	6
GMRC-21	130	135	5	3.89	2
GMRC-21	160	165	5	1.40	4
GMRC-21	190	200	10	7.79	5
GMRC-22	105	150	45	21.38	41
GMRC-24	185	225	40	7.93	104
GMRC-24	245	250	5	3.25	67